

ООО НТФ "МИКРОНИКС"

УНИВЕРСАЛЬНЫЙ ЦИФРОВОЙ ТРЁХОСЕВОЙ ДАТЧИК ВИБРАЦИИ ВД15

СПОСОБЫ ИНДИКАЦИИ ПАРАМЕТРОВ ДАТЧИКА

Руководящий технический материал ГСПК.402321.041 РТМ

Редакция 1.2

г. Омск

Содержание

1. Введение	3
2. Варианты исполнения и подключения	3
2.1 Датчики вибрации с интерфейсом «Токовая петля 4-20мА».	3
2.2 Датчики вибрации с интерфейсом RS-485	5
2.2.1 Настройка ПО «Owen Configurator»	6
2.2.2 Настройка СМИ-2М в режиме Master в ПО «Owen Configurator»	7
2.2.3 Настройка СМИ-2М в режиме Spy в ПО «Owen Configurator»	8

Данный руководящий технический материал (РТМ) предназначен для ознакомления обслуживающего персонала со способами индикации вибропараметров универсального цифрового трёхосевого датчика вибрации ВД15.

Указанные в данном материале индикаторы производства фирм «Овен» и Omix являются одними из возможных внешних приборов отображения (визуализации) вибропараметров датчика.

1. Введение

Настоящий руководящий технический материал (РТМ) описывает варианты организации отображения (визуализации) вибропараметров, измеряемых универсальным цифровым датчиком вибрации ВД15. Поскольку на современном рынке имеется достаточное количество индикаторов, подключаемых к датчикам вибрации через интерфейсы «Токовая петля 4-20 мА» и RS-485, фирма «Микроникс» не выпускает индикаторы собственной разработки и предлагает воспользоваться изделиями сторонних производителей. В данном материале в качестве примера рассматриваются индикаторы производства фирм «Овен» и Omix.

В данном материале не рассматриваются устройства сбора данных и устройства параметризации, также работающие с датчиками вибрации ВД15.

2. Варианты исполнения и подключения

Вне зависимости от варианта исполнения датчика вибрации (разъёмное или неразъёмное подключение кабеля, напряжение питания, отсутствие/наличие дискретного выхода и т.д.), с точки зрения индикации измеряемых параметров важен только тип интерфейса датчика вибрации.

2.1 Датчики вибрации с интерфейсом «Токовая петля 4-20мА»

Это датчики вариантов исполнения ВД15-3/4, -7/8, -9/10. Схема подключения индикатора Omix P94-DA1-AS (цифровой амперметр постоянного тока класса точности 0,5) к датчику по трёхпроводной токовой петле приведена на рисунке 1.

Рисунок 1. Схема подключения индикатора через трёхпроводную токовую петлю

Для случая четырёхпроводной токовой петли, которая рекомендуется для использования в условиях тяжёлой помеховой обстановки, на рисунке 2 приведена соответствующая схема подключения индикатора.

Наконец, на рисунке 3 приведена очевидная схема подключения индикатора по двухпроводной токовой петле, в которой питание датчика осуществляется током самой токовой петли. Поскольку во всех приведённых схемах в качестве индикатора может быть применён цифровой амперметр, перевод его показаний из мА в мм/с пользователь должен производить самостоятельно. Для этого следует воспользоваться формулой преобразования:

$$V [mm/c] = \frac{(I-4)*Vmax}{16},$$

где I – текущие показания индикатора [mA];

Vmax – максимальное значение в диапазоне измеряемых датчиком значений виброскорости. Vmax= 20, 50, 100, 200 мм/с задаётся при параметризации датчика.

Но у рассматриваемого индикатора P94-DA1-AS имеется функция масштабирования диапазона отображения измеряемой физической величины. Это позволяет настроить индикатор на прямое отображение вибропараметров (обычно виброскорости). Для этого в соответствии с Руководством по эксплуатации индикатора следует задать границы диапазона измерений виброскорости и значение порога, ниже которого сигнал будет отображаться нулевым значением. Настройка индикатора производится с помощью четырёх кнопок на его лицевой панели, описана в его «Руководстве по эксплуатации» (стр. 3) и не вызывает затруднений.

Рисунок 2. Схема подключения индикатора через четырёхпроводную токовую петлю

В двухпроводной схеме питание датчика осуществляется током (менее 4 мА) самой токовой петли, что делает ненужным дополнительный блок питания и в некоторых случаях бывает удобно.

Рисунок 3. Схема подключения индикатора через двухпроводную токовую петлю

В качестве индикатора вибропараметров альтернативой амперметру фирмы Omix может служить более дорогой, но менее габаритный «Измеритель технологических параметров ИТП-11»

производства фирмы «Овен». Он выпускается в двух модификациях (см. рисунок 4). Данный индикатор связывается с датчиком ВД15 также с помощью токовой петли 4-20 мА и, собственно, от неё же питается. Т.е. с учётом этого обстоятельства он может подключаться к датчику по любой из вышеприведённых схем. Но пересчёт показаний индикатора производить не требуется, поскольку он масштабирует измеряемый сигнал в соответствии с заданными нижней и верхней границами диапазона отображения измеряемой величины. Дополнительно индицируется авария при обрыве входного сигнала или выходе его за указанные границы.

Задание параметров индикатора, включая границы диапазона отображаемых значений, производится в соответствии с алгоритмом, граф-схема которого приведена в разделе 8 его «Руководства по эксплуатации». Настройка осуществляется с помощью трёх кнопок на корпусе изделия, подключенного к двухпроводной токовой петле.

ИТП-11, ИТП-14, ИТП-16

ИТП-11.Н3

Рисунок 4. Внешний вид преобразователя параметров

2.2 Датчики вибрации с интерфейсом RS-485

Этот интерфейс имеется во всех вариантах исполнения датчика, кроме ВД15-9(-10). Схема подключения индикатора вибропараметров, в качестве которого можно использовать Modbusиндикатор СМИ2-М производства фирмы «Овен», приведена на рисунке 5.

Рисунок 5. Схема подключения индикатора СМИ2-М

Индикатор имеет три режима работы, установка которых (наряду с другими параметрами) производится после подключении его к компьютеру пользователя. Дальнейшая настройка описана в подразделе 2.2.1 данного РТМ.

Режимы работы индикатора:

Master – индикатор выступает в роли мастер-устройства, опрашивая датчик и отображая значение одного из его параметров. Изменение цвета индикатора и включение мигания происходит согласно встроенной логике индикатора, заданной пользователем.

Slave – индикатор отображает значение, полученное от мастер-устройства (например, ПЛК). Изменение цвета индикатора и включение мигания может происходить или по команде от мастерустройства (согласно его программе), или по встроенной логике СМИ2-М. К одной шине RS-485 может быть подключено до 32 индикаторов.

Данный режим индикатора обычно не представляет интереса, поскольку ВД15 тоже по определению slave и для организации обмена данными между датчиком и индикатором необходим Мастер сети с соответствующим программным обеспечением.

Spy – индикатор подключается к шине, в которой уже есть мастер-устройство и «прослушивает» трафик, ожидая запроса или ответа с заданными параметрами (адрес устройства, код функции, адрес регистра). Это позволяет использовать прибор в уже эксплуатируемых системах, где нет возможности осуществить перенастройку оборудования. Еще один вариант использования данного режима – синхронное обновление данных на множестве индикаторов с помощью широковещательной рассылки (broadcast) от мастер-устройства на адрес 0. Для каждого индикатора задается индивидуальный номер регистра в прослушиваем запросе, что позволяет каждому прибору извлечь из широковещательного запроса «свои» данные.

2.2.1 Настройка ПО «Owen Configurator»

Данный подраздел взят с официального руководства по эксплуатации СМИ2-М (см. <u>https://docs.owen.ru/product/smi2-m/778/74740</u>). Перед подключением и настройкой прибора следует скачать ПО «Owen Configurator» с официального сайта компании «OBEH» owen.ru и установить на ПК, при этом важно не пропустить установку драйверов.

Для включения индикатора совместно с ПО «Owen Configurator» следует:

1. Подключить прибор к ПК с помощью кабеля Micro-USB. Обратите внимание на длину разъёма на кабеле. В некоторых случаях её может быть недостаточно для полного контакта кабеля с разъемом индикатора.

Примечание: При подключении прибора к ПК с помощью кабеля Micro-USB подача основного питания прибора не требуется, так как питание осуществляется от порта USB.

2. Открыть ПО «Owen Configurator».

3. В строке меню выбрать «Добавить устройства».

4. В открывшемся окне в поле «Интерфейс» выбрать «Устройство с последовательным интерфейсом».

Сетевые настройки

Интерфейс

Устройство с последовательным интерфейсом USB (COM9)	•
Wireless80211 (owen.ru)	
Wireless80211	
Ethernet (owen.ru)	
Ethernet	
Устройство с последовательным интерфейсом USB (COM9)	
COM4	
COM2	

5. В поле «Протокол» выбрать «Owen Auto Detection Protocol».

Протокол			
Owen Auto Detection Protocol	•		
Modbus RTU			
Owen Auto Detection Protocol			
Овен			

6. Выбрать «Найти одно устройство», ввести адрес подключенного прибора и нажать «Найти».

Примечание: адрес прибора для интерфейса USB всегда равен 1 и не может быть изменен.

Найти одно устройство
1pec
Найти

7. После появления устройства в правой части окна нажать поле «Добавить устройства».

			Выбрать все	Снять все
	Имя	Адрес	Версия	
\checkmark	СМИ2-М	1 (COM4)	0.1	\sim
		Добавит	гь устройства От	мена

2.2.2 Настройка СМИ-2М в режиме Master в ПО «Owen Configurator»

Для настройки индикатора СМИ-2М в режиме Мастера сети требуется:

1. Раскрыть список «Настройки порта RS-485» и «Скорость СОМ-порта», установить «115200» (если скорость датчика не изменялась).

Настройки порта RS-485					
	Скорость СОМ-порта 🧷	115200 🗸	9600		
	Размер данных	8 бит 🗸	8 бит		
	Кол. стоп-битов	1 стоп-бит	1 стоп-бит		
	Контроль чётности	Нет 🗸	Нет		
	Признак конца кадра	IDLE frame	IDLE frame		

2. Раскрыть список «Индикатор» и выбрать «Режим работы устройства» – «MASTER».

4	Ин	дикатор		
	۲	Настройки Modbus Master		
	۲	Настройки Modbus Spy		
	×	Общие настройки Modbus		
	×	Настройки индикатора		
	۲	Оперативные значения		
	۲	Встроенная логика		
		Режим работы устройства 🛛 🖉	MASTER 🗸	SLAVE

3. Раскрыть список «Настройки Modbus Master», изменить при необходимости «Адрес устройства», «Таймаут ответа», «Период опроса» и «Адрес регистра». Адреса регистров указаны в РЭ к изделию ВД15, для примера взято виброускорение по оси Х.

4	Настройки Modbus Master					
	Протокол	RTU 🗸	RTU			
	Адрес устройства	1	1	1	255	
	Таймаут ответа	1000	1000	250	65535	мс
	Функция Modbus	(0x03) Read Holding Registers	(0x03) Read Holding Registers			
	Адрес регистра 🖉	15	0	0	65535	
	Период опроса	200	200	100	65535	мс

4. Раскрыть список «Общие настройки Modbus», «Порядок байт» установить как «Инверсия только регистров».

	1 A A A A A A A A A A A A A A A A A A A					
0	бщие настройки Modbus					
	Slave ID индикатора	1	1	1	255	
	Порядок байт 🧷	Инверсия только регистров	Не менять			
	Таймаут безопасного состояния	0	0	0	60	сек
	Битовая маска безопасного состо	70 40 40 46	70 40 40 46	0	FF FF FF FF	
	Цвет в безопасном состоянии	Зелёный 🗸	Зелёный			
	Мигание в безопасном состоянии	Выключено 🗸	Выключено			

5. Раскрыть список «Настройки индикатора» и «Тип переменной» задать как «REAL».

Настройки индикатора					
Тип переменной 🖉	REAL	INT			
Цвет	Зелёный 🗸	Зелёный			
Яркость	75	75	0	100	
Число ведущих нулей	0	0			
Положение десятичной точки	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Коэффициент сдвига	0	0	-999	9999	
Коэффициент наклона	1	1	-999	9999	
Мигание	Выключено 🗸	Выключено			
Период мигания	1000	1000	250	3000	мс
Режим отображения	Статичный 🗸	Статичный			
Период сдвига бегущей строки	100	100	100	1500	мс

6. Записать конфигурацию в индикатор, нажав на «Записать значения»

2.2.3 Настройка СМИ-2М в режиме Spy в ПО «Owen Configurator»

Для настройки индикатора СМИ-2М в режиме Spy в сети требуется:

1. Раскрыть список «Настройки порта RS-485» и «Скорость СОМ-порта» установить «115200» (если скорость датчика не изменялась).

- 4 F	łастройки порта RS-485			
	Скорость СОМ-порта 🖉	115200	9600	
	Размер данных	8 бит 🗸	8 бит	
	Кол. стоп-битов	1 стоп-бит 🗸	1 стол-бит	
	Контроль чётности	Нет 🗸	Her	
	Признак конца кадра	IDLE frame	IDLE frame	

2. Раскрыть список «Индикатор» и выбрать «Режим работы устройства» – «SPY».

4	Ин	дикатор		
	۲	Hастройки Modbus Master		
	۲	Настройки Modbus Spy		
	×	Общие настройки Modbus		
	×	Настройки индикатора		
	۲	Оперативные значения		
	۲	Встроенная логика		
		Режим работы устройства 🛛 🖉	MASTER 🗸	SLAVE

3. Раскрыть список «Modbus Spy», «Номер функции» выбрать «(0x03) Read Holding Registers» задать «Адрес устройства» и «Адрес регистра». Адреса регистров указаны в РЭ к изделию ВД15, для примера взято виброускорение по оси Х.

	I contraction of the second				
и Настройки Modbus Spy					
	Адрес устройства	1	1	0	255
	Номер функции 🖉	(0x03) Read Holding Registers	(0x04) Read Input Registers		
	Адрес регистра 🖉	15	1	0	65535

4. Раскрыть список «Общие настройки Modbus», обязательно установить «Slave ID индикатора» таким, чтобы его адрес не совпадал ни с одним адресом устройств в используемой сети Modbus (например, 255). «Порядок байт» задать как «Инверсия только регистров».

4	Общие настройки Modbus					
	Slave ID индикатора 🖉	255	1	1	255	
	Порядок байт 🧷	Инверсия только регистров 🛛 🗸	Не менять			
	Таймаут безопасного состояния	0	0	0	60	сек
	Битовая маска безопасного состо	70 40 40 46	70 40 40 46	0	FF FF FF FF	
	Цвет в безопасном состоянии	Зелёный 🗸	Зелёный			
	Мигание в безопасном состоянии	Выключено 🗸	Выключено			

5. Раскрыть список «Настройки индикатора» и «Тип переменной» задать как «REAL».

Настройки индикатора					
Тип переменной 🖉	REAL	INT			
Цвет	Зелёный 🗸	Зелёный			
Яркость	75	75	0	100	
Число ведущих нулей	0	0			
Положение десятичной точки	~				
Коэффициент сдвига	0	0	-999	9999	
Коэффициент наклона	1	1	-999	9999	
Мигание	Выключено 🗸	Выключено			
Период мигания	1000	1000	250	3000	мс
Режим отображения	Статичный 🗸	Статичный			
Период сдвига бегущей строки	100	100	100	1500	мс

6. Записать конфигурацию в индикатор, нажав на «Записать значения»

